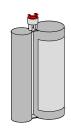


INDICAZIONI PER LA SCELTA DELLA CONNESSIONE

GF400PLUS P. 352 GF585EPLUS P. 357



Categoria

Ancorante chimico

Dimensioni

400 mL

Categoria

Ancorante chimico

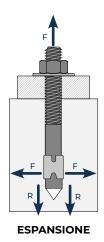
Dimensioni

585 mL

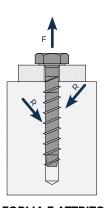
EPFUR P. 362

Categoria

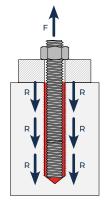
Ancorante chimico


Dimensioni

Fusto 4 kg + catalizzatore 1 kg RAL 1015

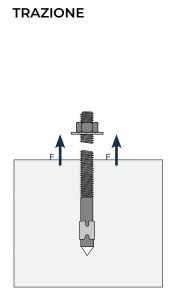


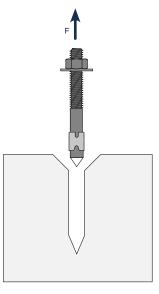
PRINCIPI DI FUNZIONAMENTO



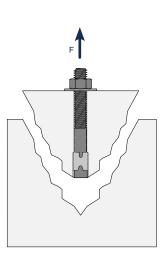
Tenuta a secondo della forma del materiale di base dell' ancorante

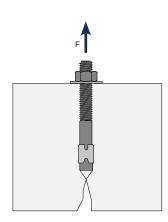
FORMA E ATTRITO


Tenuta a seconda dell' azione combinata della componente forma e attrito

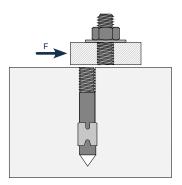

ADESIONE

Tenuta per adesione chimica

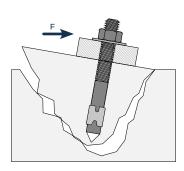

MECCANISMI DI ROTTURA


Rottura lato acciaio

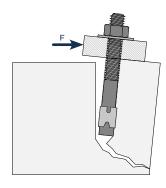
Rottura per sfilamento (pull-out)



Rottura del cono di calcestruzzo



Rottura per fessurazione (splitting)


TAGLIO

Rottura del materiale acciaio

Rottura per scalzamento pry-out

Rottura del bordo di calcestruzzo

Ancorante meccanico

Barra filettata con ancorante chimico

PROGETTAZIONE E QUALIFICA SISMICA

Un corretto approccio alla progettazione in condizioni sismiche, sia per elementi strutturali che non strutturali, non può prescindere dalle condizioni in cui il materiale base viene effettivamente a trovarsi durante il terremoto.

La struttura, in risposta al movimento del suolo, subirà spostamenti e quindi deformazioni nei suoi elementi costitutivi. Queste deformazioni portano alla formazione e apertura di fessure negli elementi in calcestruzzo.

Conseguentemente, tutti gli ancoranti destinati a trasferire carichi sismici devono essere idonei per l'impiego in calcestruzzo fessurato e la loro progettazione deve essere basata sull'assunzione che le fessure nel materiale base abbiano cicli di apertura e chiusura per la durata del movimento del terreno.

Un ancorante adatto (certificato) per essere impiegato in un calcestruzzo comunemente definito fessurato, con fessure di 0,3mm, non è conseguentemente idoneo a resistere ad azioni sismiche, ma rappresenta solo un punto di partenza.

Durante un sisma, i carichi ciclici nella struttura e nell'ancoraggio avvengono simultaneamente.

Ne consegue che l'ampiezza delle fessure varia tra un valore minimo e massimo ed i fissaggi saranno caricati ciclicamente.

Test con procedure specifiche e criteri di verifica adeguati sono quindi necessari per valutare correttamente le prestazioni di un ancorante sottoposto ad azioni sismiche.

Solo gli ancoranti certificati sulla base di tali requisiti saranno adatti per connessioni rilevanti per la sicurezza.

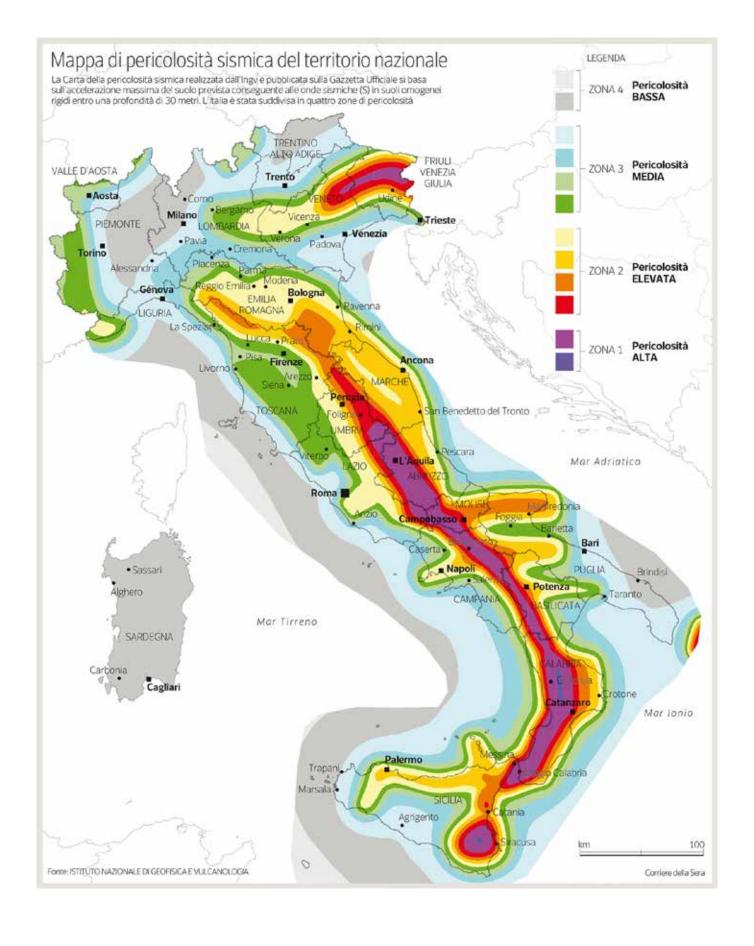
Le prove da effettuare sull'ancorante per poter ottenere la certificazione vengono descritte nella linea guida ETAG-001.

L'idoneità di un ancorante per azioni di tipo sismico viene valutata secondo due differenti categorie sismiche (C1 e C2) in funzione della gravosità dei test.

Mentre la categoria C1 è analoga alla procedura di prequalifica sismica americana, la categoria sismica C2 comporta una serie di prove in cui, oltre alla ciclicità del carico, è presa in considerazione anche la variabilità di apertura della fessura fino ad una ampiezza massima di 0,8mm.

LIVELLO DI SISM	CLASSE DI IMPORTANZA						
CLASSE	a _g x s	I II IV					
MOLTO BASSA	a _g x s ≤ 0,05g	ETA NON SISMICO					
BASSA	0,05g < a _g x s ≤ 0,1g	ETA C1	ETA C1 ETA C1 ETA C2 ETA C				
> BASSA	agxs> 0,1g	ETA C1		ETA C2			

LEGENDA

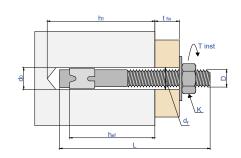

I = Edifici di minore importanza per la sicurezza pubblica (es. costruzioni agricole)

II = Edifici ordinari, non appartenenti ad altre categorie, come gli edifici di civile abitazione

III = Edifici la cui resistenza sismica è di importanza in vista delle conseguenze associate ad un collasso (es. scuole, sala per convegni, istituzioni, culturali)

IV = Edifici la cui integrità durante i terremoti è di vitale importanza per la protezione civile (es. ospedali, stazioni dei pompieri, impianti per la produzione di energia).

5 1	Campi di utilizzo							
Prodotto	Calcestruzzo	Muratura piena	Pietra	Muratura forata	Legno			
VE								
VESKS								
MECE (ATTITUTE)								
METS								
OM COM								
VA								
SV								
VP								
VC								
VB								



Prodotto	Campi di utilizzo							
Trodotto	Calcestruzzo	Muratura piena	Pietra	Muratura forata	Legno			
GF400PLUS			000					
GF585EPLUS			000					
EPFUR COLMX EPOX +			000					

Ancoraggio pesante mono anello CE Opzione 7 per calcestruzzo non fessurato

D = diametro tassello L= lunghezza tassello do = diametro foro nell'elemento "ospitante" df = diametro foro nell'elemento da fissare h₁ = profondità minima foro h_{ef} = profondità effettiva di ancoraggio t_{fix} = spessore fissabile K = chiave Tinst = coppia di serraggio

- L'ancorante VE è costituito da un corpo filettato e da una fascetta di espansione a tre segmenti, entrambi in acciaio.
- E' dotato di filettatura lunga che consente di gestire varie lunghezze di penetrazione, pur rimanendo entro i limiti consentiti dalle
- E' adatto per applicazioni su materiali compatti come calcestruzzo e pietra.
- Il dado e la rondella pre-assemblati velocizzano la posa e la particolare conformazione della fascetta d'espansione impedisce la rotazione durante la fase di serraggio.

MATERIALE

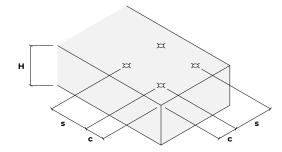
CERTIFICAZIONI

Commerciale

Dimensionale

Gamma	D	L	Q.tà*	d ₀	d _f	hl	h _{ef}	t _{fix}	К	T inst
Codice	Ø	mm	N°	Ø	Ø	mm	mm	mm	mm	Nm
290VE08075	8	75	100	8	10	60	45	17	13	20
290VE08090	8	95	100	8	10	60	45	37	13	20
290VE10070	10	75	50	10	12	65	50	10	17	35
290VE10090	10	90	50	10	12	65	50	25	17	35
290VE10120	10	120	50	10	12	65	50	55	17	35
290VE12110	12	110	25	12	14	80	60	28	19	55
290VE12140	12	140	20	12	14	80	60	58	19	55
290VE12180	12	180	20	12	14	80	60	98	19	55
290VE12280	12	280	10	12	14	80	60	198	19	55
290VE16125	16	125	10	16	18	110	85	10	24	100
290VE16145	16	145	10	16	18	110	85	30	24	100
290VE16170	16	170	10	16	18	110	85	55	24	100
290VE16240	16	240	5	16	18	110	85	125	24	100
290VE16400	16	400	5	16	18	110	85	285	24	100
290VE20170	20	170	10	20	22	125	100	35	30	150
290VE20220	20	220	15	20	22	125	100	85	30	150

^{*} per confezione (articoli fornibili anche singolarmente)


SCHEDA TECNICA VE

VE > Valori statici

D		Fattori parziali							
Ø	γ	М	γ_{inst}		incremento a trazione per cls di classe superiore [$\Psi_{\mathbf{C}}$]			V, _{Rk}	
	trazione	taglio	msc	C30/37	C40/50	C50/60	[kN]	[kN]	
8	1,50	1,25	1,20	1,22	1,41	1,55	9,00	9,20	
10	1,50	1,25	1,20	1,22	1,41	1,55	12,00	14,50	
12	1,50	1,25	1,20	1,10	1,10	1,20	20,00	21,10	
16	1,50	1,25	1,40	1,10	1,10	1,20	22,00	39,30	
20	1,50	1,25	1,00	1,22	1,41	1,55	30,00	58,80	

VE > Dati geometrici e di calcolo

D	H _{min}	s _{min}	c _{min}	s _{cr,N}	s _{cr,sp}	c _{cr,N}	c _{cr,sp}
Ø	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
8	100	61	61	135	225	68	113
10	100	68	68	150	250	75	125
12	120	81	81	180	320	90	150
16	170	115	115	255	440	128	213
20	200	135	135	300	500	150	250

cr,N = rottura per formazione del cono di CLScr,S = rottura per fessurazione del CLS

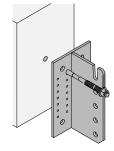
PRINCÌPI DI CALCOLO

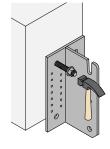
Le resistenze caratteristiche riportate derivano dai valori certificati secondo ETA 17/0237 e fanno riferimento a singolo ancorante, lontano dai bordi, su calcestruzzo C20/25 di grande spessore e con armatura rada.

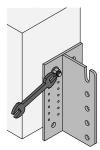
Per il calcolo di ancoraggi con interassi ridotti, per ancoraggi vicini al bordo o per il fissaggio su calcestruzzo di resistenza superiore o di spessore ridotto, fare riferimento alla ETA 17/0237 o alla Dichiarazione di Prestazione ed utilizzare il metodo di calcolo A descritto nella normativa EN 1992-4.

I valori di progetto si ricavano dalle seguenti formule:

$$\begin{cases} N_{,Rd} = \frac{N_{,Rk}}{\gamma_{inst} \cdot \gamma_{M}} \\ V_{,Rd} = \frac{V_{,Rk}}{\gamma_{M}} \end{cases}$$

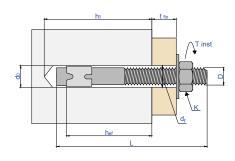

CONSIGLI PER IL MONTAGGIO


Forare con punta adeguata (vedi tabella D0)


Eliminare residui di polvere o altro

Posizionare la staffa e inserire l'ancorante o viceversa

Battere nell'apposita parte per inserire l'ancorante fino alla massima profondità


Avvitare con una chiave e controllare il serraggio come da scheda

VESKS

Ancoraggio pesante mono anello CE 1

- » L'ancorante VESKS è progettato per fissaggi strutturali di carichi pesanti su supporti compatti ce pietra e calcestruzzo.
- » E' costituito da un corpo in acciaio e una fascetta d'espansione a 3 segmenti in acciaio INOX.
- » E' dotato di filettatura lunga che consente di gestire varie lunghezze di penetrazione sul cemento pur rimanendo entro i limiti consentiti dalle norme.
- » Il dado e la rondella pre-montati facilitano la velocità di posa e la particolare conformazione della fascetta d'espansione, impedisce la rotazione durante la fase di serraggio.

MATERIALE

CAMPI DI UTILIZZO

CERTIFICAZIONI

CERTIFICAZIONE PER FISSAGGI IN ZONA SISMICA

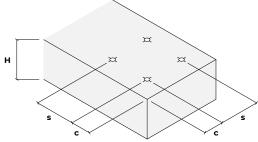
CERTIFICATO DI RESISTENZA AL FUOCO F120

Commerciale				Dimensionale							
Gamma	Ø	L	Q.tà	Ø D1 = D0	Lt	f	h1	hef	tfix	К	Tinst
Codice	mm	mm	N°	mm	mm	mm	mm	mm	mm	mm	Nm
290SKS12120	12	120	25	12	120	58	85	70	14	19	60
290SKS12150	12	150	20	12	150	98	85	70	54	19	60
290SKS16145	16	145	10	16	145	80	105	85	28	24	100
290SKS20170	20	170	5	20	170	102	125	100	32	30	200
290SKS20200	20	200	5	20	200	132	125	100	62	30	200

^{*} per confezione (articoli fornibili anche singolarmente)

SCHEDA TECNICA ANCORANTE VESKS

VESKS > Valori statici ancorante


Valori statici caratteristici su cls C20/25 NON FESSURATO										
- Ø 12 16 20										
Nt,rk (trazione)	kN	25,0	35,0	50,0						
Fv,rk (taglio)	Fv,rk (taglio) kN 25,3 47,1 73,1									
Valori statici caratteri	stici su cl	s C20/25 I	-ESSURA	то						
-	- Ø 12 16 20									
Nt,rk (trazione)	Nt,rk (trazione) kN 16,0 25,0 30,0									
Fv,rk (taglio) kN 25,3 56,4 72,0										

I valori sopra riportati sono validi per singolo ancorante senza influenza di bordi

	Fattori di incr la resistenza						
Ψс	C30/37	1,22					
	C40/50	1,41					
	C50/60 1,55						

VESKS > Dati per calcolo

Distanze e interassi critici								
-	M12	M16	M20					
Scr,N [mm]	180	255	300					
Scr,sp [mm]	300	425	500					
Ccr,N [mm]	90	128	150					
Ccr,sp [mm]	150	213	250					
Hmin [mm]	120	170	200					

cr,N = rotturaper formazione del cono di CLS

cr,S = rottura per fessurazione del CLS

PRINCIPI DI CALCOLO

Le resistenze caratteristiche riportate derivano dai valori certificati secondo ETA 17/0237 e fanno riferimento a singolo ancorante, lontano dai bordi, su calcestruzzo C20/25 di grande spessore e con armatura rada.

Per il calcolo di ancoraggi con interassi ridotti, per ancoraggi vicini al bordo o per il fissaggio su calcestruzzo di resistenza superiore o di spessore ridotto, fare riferimento alla ETA 17/0237 o alla Dichiarazione di Prestazione ed utilizzare il metodo di calcolo A descritto nella normativa EN 1992-4.

I valori di progetto si ricavano dalle seguenti formule:

$$\begin{cases} N_{,Rd} = \frac{N_{,Rk}}{\gamma_{inst} \cdot \gamma_{M}} \\ V_{,Rd} = \frac{V_{,Rk}}{\gamma_{M}} \end{cases}$$

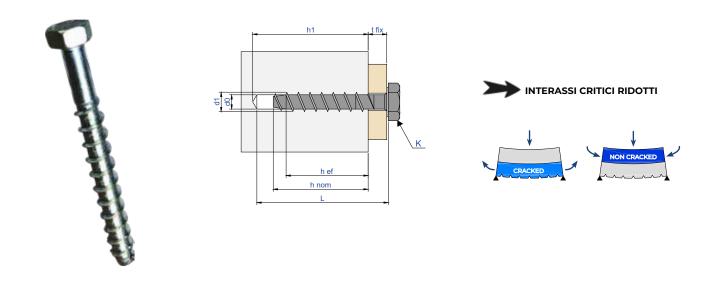
AZIONI SISMICHE

L'ancorante, nelle misure da M12 a M20 può essere utilizzato sotto azioni sismiche per categoria di prestazione C1 e C2. Per il calcolo della resistenza degli ancoraggi sotto azioni sismiche fare riferimento al metodo di calcolo descritto nel Technical Report 045 dell'EOTA.


Valori statici caratteristici per performance sismica C1									
-	Ø	10	12	16	20				
Nt,rk (trazione)	kN	13,9	8,4	17,5	30				
Fv,rk (taglio) kN 12,2 17,8 33 58,5									

NOTA. I valori sopra riportati sono validi per singolo ancorante senza influenza di bordi

Valori statici caratteristici per performance sismica C2						
-	Ø	10	12	16	20	
Nt,rk (trazione)	kN	-	5,2	8,9	21	
Fv,rk (taglio)	kN	-	17,8	33	58,5	


NOTA. I valori sopra riportati sono validi per singolo ancorante senza influenza di bordi

I valori a trazione riportati tengono conto del valore minore tra resistenza a trazione dell'ancorante, rottura per pull-out e a cono del CLS.

MECE

Ancorante autofilettante testa esagonale

MATERIALE

CAMPI DI UTILIZZO

CERTIFICAZIONI

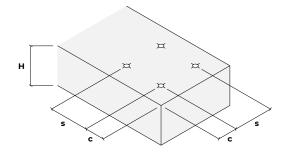
ETA OPZIONE 1 per CLS fessurato

Commerciale			Dimensio	onale					
Gamma	ØxL	Q.tà*	Ø D1	Ø d0	hì ≥	hef	tfix	К	Tinst
Codice	mm	N°	mm	mm	mm	mm	mm	mm	Nm
290MECE75040	7,5 x 40	100	9	6	70	-	-	13	20
290MECE75050	7,5 x 50	100	9	6	70	41	-	13	20
290MECE75060	7,5 x 60	100	9	6	70	41	5	13	20
290MECE75080	7,5 x 80	50	9	6	70	41	25	13	20
290MECE10060	10,5 x 60	50	12	9	90	55	-	15	40
290MECE10080	10,5 x 80	50	12	9	90	55	5	15	40
290MECE10100	10,5 x 100	50	12	9	90	55	25	15	40
290MECE10120	10,5 x 120	50	12	9	90	71	45	15	40
290MECE12080	12,5 x 80	50	14	10	110	71	5	17	60
290MECE12100	12,5 x 100	50	14	10	110	71	5	17	60
290MECE12120	12,5 x 120	50	14	10	110	71	25	17	60
290MECE12140	12,5 x 140	50	14	10	110	71	45	17	60
290MECE12160	12,5 x 160	50	14	10	110	71	65	17	60
290MECE12180	12,5 x 180	50	14	10	110	71	85	17	60
290MECE12200	12,5 x 200	50	14	10	110	71	105	17	60
290MECE12240	12,5 x 240	50	14	10	110	71	145	17	60
290MECE12280	12,5 x 280	25	14	10	110	71	185	17	60
290MECE12320	12,5 x 320	25	14	10	110	71	250	17	60

^{*} per confezione (articoli fornibili anche singolarmente)

SCHEDA TECNICA ANCORANTE MECE

MECE > Valori statici ancorante


Valori statici caratteristici su cls C20/25 FESSURATO e NON FESSURATO						
-		Ø	7,5	10,5	12,5	
Nt,rk (trazione)	Fessurato	kN	3	3	12	
	Non fessurato	kN	6	6	25	
Fv,rk (taglio)		kN	11	22	35	

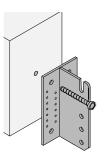
	er singolo ancorante senza	

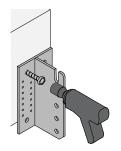
Fattori di incremento per la resistenza a trazione:							
Ø CLS	Ø 7,5	Ø 10,5	Ø 12,5				
C30/37	1	1	1,11				
C40/50	1	1	1,21				
C50/60	1	1	1,32				

MECE > Dati per calcolo

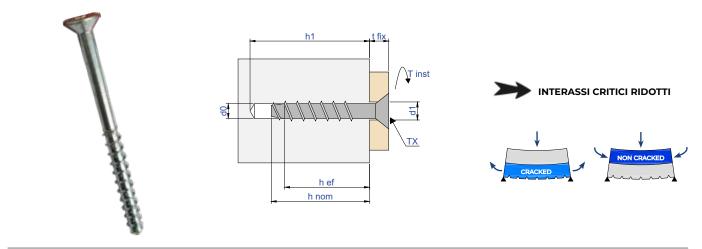
Distanze e interassi critici						
Ø	7,5	10,5	12,5			
mm	40	55	65			
mm	40	55	65			
mm	100	160	200			
	Ø mm mm	Ø 7,5 mm 40 mm 40	Ø 7,5 10,5 mm 40 55 mm 40 55			

Ψс


CONSIGLI PER IL MONTAGGIO


Forare con punta adeguata (vedi tabella D0)

Eliminare residui di polvere o altro


Posizionare la staffa e inserire l'ancorante o viceversa

Avvitare l'ancorante fino alla massima profondità

METS

Ancoraggio autofilettante testa svasata

MATERIALE

Z.E.

CAMPI DI UTILIZZO

CERTIFICAZIONI

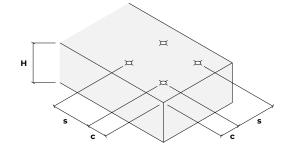
Commerciale	Dimensionale
-------------	--------------

Gamma	Ø	L	Q.tà*	Ø DI	Ø D0	Ø dk	hì	h nom	hef	tfix	Tx	Tinst
Codice	mm	mm	N°	mm	mm	mm	mm	mm	mm	mm	-	Nm
290MECETS75080	7,5	80	100	9	6	14	70	55	41	25	T - 40	20
290MECETS75100	7,5	100	100	9	6	14	70	55	41	45	T - 40	20
290MECETS75120	7,5	120	100	9	6	14	70	55	41	-	T - 40	20
290MECETS75140	7,5	140	100	9	6	14	70	55	41	-	T - 40	20
290MECETS75160	7,5	160	100	9	6	14	70	55	41	-	T - 40	20

^{*} per confezione (articoli fornibili anche singolarmente)

SCHEDA TECNICA ANCORANTE METS

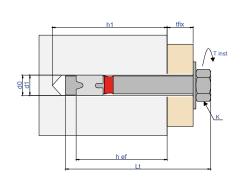
METS > Valori statici ancorante

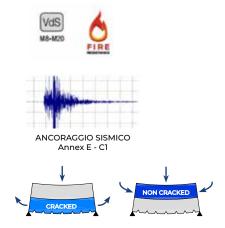

Valori statici caratteristici su cls C20/25 FESSURATO e NON FESSURATO					
		Ø	7,5		
Nt,rk (trazione)	Fessurato	kN	3		
	Non Fessurato	kN	6		
Fv,rk acciaio (taglio)		kN	11		

	Fattori di incremento per la resistenza a trazione :				
Ψс	C30/37	1			
	C40/50	1			
	C50/60	1			

NOTA. I valori sopra riportati sono validi per singolo ancorante senza influenza di bordi

METS > Dati per il calcolo


Distanze e interassi critici					
-	Ø	7,5			
S, min mm	mm	40			
C, min mm	mm	40			
H, min mm	mm	100			



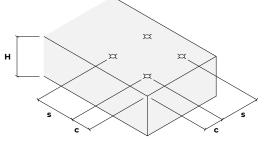
Ancorante in acciaio omologato con vite 8.8

MATERIALE

CERTIFICAZIONI

ηm		

Dır	ne	nsic	ona	le


Commerciale					Dimen	sionale					
Gamma	Ø	Lt	Vite	Q.tà*	Ø DI	Ø D0	h1	hef	tfix	К	Tinst
Codice	mm	mm	mm	N°	mm	mm	mm	mm	mm	Chiave	Nm
290GV12080	12	80	М 8	50	12	12	80	60	10	13	30
290GV12100	12	100	М 8	25	12	12	80	60	30	13	30
290GV15100	15	100	M 10	25	15	15	95	71	15	17	50
290GV15130	15	130	M 10	25	15	15	95	71	45	17	50
290GV18110	18	110	M 12	20	18	18	105	80	20	19	80
290GV18140	18	140	M 12	20	18	18	105	80	40	19	80
290GV24140	24	140	M 16	10	24	24	130	100	20	24	160
290GV24170	24	170	M 16	10	24	24	130	100	50	24	160
	Codice 290GV12080 290GV12100 290GV15100 290GV15130 290GV18110 290GV18140 290GV24140	Gamma Ø Codice mm 290GV12080 12 290GV12100 12 290GV15100 15 290GV15130 15 290GV18110 18 290GV18140 18 290GV24140 24	Gamma Ø Lt Codice mm mm 290GV12080 12 80 290GV12100 12 100 290GV15100 15 100 290GV15130 15 130 290GV18110 18 110 290GV18140 18 140 290GV24140 24 140	Gamma Ø Lt Vite Codice mm mm mm 290GV12080 12 80 M 8 290GV12100 12 100 M 8 290GV15100 15 100 M 10 290GV15130 15 130 M 10 290GV18110 18 110 M 12 290GV18140 18 140 M 12 290GV24140 24 140 M 16	Gamma Ø Lt Vite Q.tà* Codice mm mm mm N° 290GV12080 12 80 M 8 50 290GV12100 12 100 M 8 25 290GV15100 15 100 M 10 25 290GV15130 15 130 M 10 25 290GV18110 18 110 M 12 20 290GV18140 18 140 M 12 20 290GV24140 24 140 M 16 10	Gamma Ø Lt Vite Q.tà* Ø DI Codice mm mm mm N° mm 290GV12080 12 80 M 8 50 12 290GV12100 12 100 M 8 25 12 290GV15100 15 100 M 10 25 15 290GV15130 15 130 M 10 25 15 290GV18110 18 110 M 12 20 18 290GV18140 18 140 M 12 20 18 290GV24140 24 140 M 16 10 24	Gamma Ø Lt Vite Q.tà* Ø D1 Ø D0 Codice mm mm	Gamma Ø Lt Vite Q.tà* Ø DI Ø DO hI Codice mm mm mm mm N° mm mm mm 290GV12080 12 80 M 8 50 12 12 80 290GV12100 12 100 M 8 25 12 12 80 290GV15100 15 100 M 10 25 15 15 95 290GV15130 15 130 M 10 25 15 15 95 290GV18110 18 110 M 12 20 18 18 105 290GV18140 18 140 M 12 20 18 18 105 290GV24140 24 140 M 16 10 24 24 130	Gamma Ø Lt Vite Q.tà* Ø DI Ø DO hI hef Codice mm mm	Gamma Ø Lt Vite Q.tà* Ø D1 Ø D0 h1 hef tfix Codice mm mm <td>Gamma Ø Lt Vite Q.tà* Ø D1 Ø D0 h1 hef tfix K Codice mm chiave 290GV12100 12 100 M 8 25 12 12 80 60 30 13 290GV15100 15 100 M 10 25 15 15 95 71 15 17 290GV18100 18 110 M 12 20 18 18</td>	Gamma Ø Lt Vite Q.tà* Ø D1 Ø D0 h1 hef tfix K Codice mm chiave 290GV12100 12 100 M 8 25 12 12 80 60 30 13 290GV15100 15 100 M 10 25 15 15 95 71 15 17 290GV18100 18 110 M 12 20 18 18

^{*} per confezione (articoli fornibili anche singolarmente)

SCHEDA TECNICA

OM > Valori caratteristici su cls fessurato e non fessurato C20/25

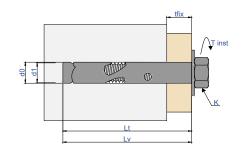
Valori statici caratteristici su cls C20/25								
-		Ø	12	15	18	24		
Nt,rum (carico ultimo medio	Fessurato	kN	18,8	30	38,8	55,5		
a trazione)	Non fessurato	kN	26,4	37,4	52,1	80,7		
Fv,rk acciaio	Fessurato	kN	31,9	46,1	84,7	116,6		
(carico ultimo medio a trazione)	Non fessurato	kN	31,9	46,1	84,7	116,6		

NOTA. I valori sopra riportati sono validi per singolo ancorante senza influenza di bordi

OM > Dati per il calcolo

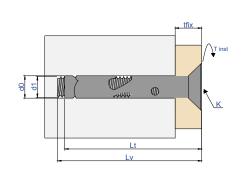
Distanze e interassi critici									
-	Ø	12	15	18	24				
S, min mm	mm	60	70	80	100				
C, min mm	mm	60	70	80	100				
H, min mm	mm	120	140	160	200				

Principi di calcolo:


- Azione di taglio non diretta verso il bordo;
 - Coefficiente di sicurezza globale incluso;
- Coefficiente lato carichi utilizzato = 1,4.

Ancorante passante in acciaio

Commerciale	Dimensionale
-------------	--------------


Gamma	ØxL	Q.tà*	D0	Lt	d1	Lv	tfix	К	Tinst
Codice	mm	N°	mm	mm	mm	mm	mm	mm	Nm
290VA08070	8 x 70	50	8	70	6	70	30	10	15
290VA10055	10 x 55	50	10	55	8	55	5	13	20
290VA10080	10 x 80	50	10	80	8	80	30	13	20
290VA10100	10 x 100	50	10	100	8	100	50	13	20
290VA10120	10 x 120	50	10	120	8	120	60	13	20
290VA12080	12 x 80	25	12	80	10	80	20	17	35
290VA12100	12 x 100	25	12	100	10	100	40	17	35
290VA12120	12 x 120	25	12	120	10	120	60	17	35

^{*} per confezione (articoli fornibili anche singolarmente)

SV

Ancorante in acciaio con testa svasata cl. 10.9

Commerciale	Dimensionale
-------------	--------------

Gamma	ØxL	Q.tà	D0	Lt	Dì	Lv	tfix
Codice	mm	N°	mm	mm	mm	mm	mm
290SV10060	10 x 60	50	10	60	8	60	9
290SV10070	10 x 80	50	10	80	8	80	29
290SV12070	12 x 70	25	12	70	10	70	10
290SV12100	12 x 100	25	12	100	10	100	40

^{*} per confezione (articoli fornibili anche singolarmente)

VP

> Ancorante in Nylon ad alette multiple

Commerciale

Dimensionale

Gamma	ØxL	Q.tà*	D0	Ø vite	L vite	tfix	К
Codice	mm	N°	mm	mm	mm	mm	mm
290VP16160	16 x 160	10	16	12	165	35	19
290VP16200	16 x 200	10	16	12	205	75	19
290VP16240	16 x 240	10	16	12	245	115	19

^{*} per confezione (articoli fornibili anche singolarmente)

VC

> Ancorante in Nylon ad alette multiple avvitabile

Commerciale

Dimensionale

Gamma	ØxL	Q.tà*	D0	Ø vite	L vite	tfix	inserto
Codice	mm	N°	mm	mm	mm	mm	mm
290VC08080	8 x 80	50	8	5	85	5	PZ 3
290VC08100	8 x 100	50	8	5	105	25	PZ 3
290VC08120	8 x 120	50	8	5	125	45	PZ 3
290VC10140	10 x 140	25	10	7	140	65	TX 40
290VC10160	10 x 160	25	10	7	165	85	TX 40
290VC10200	10 x 200	25	10	7	205	125	TX 40

^{*} per confezione (articoli fornibili anche singolarmente)

VB

> Ancorante in Nylon liscio a battere

CAMPI DI UTILIZZO

Commerciale

Dimensional	E

Gamma	ØxL	Q.tà*	D0	Ø vite	L vite	tfix	inserto
Codice	mm	N°	mm	mm	mm	mm	mm
290VB06080	6 x 80	100	6	3,8	60	50	PZ 2
290VB08075	8 x 75	100	8	4,8	80	40	PZ 3
290VB08100	8 x 100	50	8	4,8	105	45	PZ 3
290VB08135	8 x 135	50	8	4,8	135	100	PZ3

^{*} per confezione (articoli fornibili anche singolarmente)

GF400PLUS

Ancorante chimico Vinilestere Plus

CERTIFICAZIONI

Option 1 - Option 7

Option 1 per barre M10 ÷ M20 (cls fessurato) Option 7 per barre M8 ÷ M30 (cls non fessurato)

Qualifica in Categoria Sismica C1 per barre M12 ÷ M20 Qualifica in Categoria Sismica C2 per barre M12 ÷ M16

CAMPI DI UTILIZZO

Commerciale Dimensionale

Gamma	Q.tà*	Descrizione
Codice	N°	-
290GF400PLUS	12	Cartuccia di resina vinilestere bi-componente da 400 mL completa di 2 miscelatori

^{*} per confezione (articoli fornibili anche singolarmente)

Articoli Complementari

Codice	Q.tà*	Descrizione	per barre filettate
-	N°	-	-
290RET12	1	Calza metallica Ø12 (1 mt)	M8
290RET16	1	Calza metallica Ø16 (1 mt)	M8 ÷ M12
290RET22	1	Calza metallica Ø22 (1 mt)	M12 ÷ M16
290RET30	1	Calza metallica ø30 (1 mt)	M16 ÷ M24
290MISC	20	Miscelatore	-
290SOFF	1	Pompa di soffiaggio	-
290P400	1	Pistola manuale	-

^{*} per confezione (articoli fornibili anche singolarmente)

CARATTERISTICHE

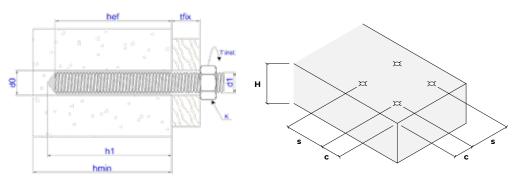
- » prodotto senza stirene adatto anche per fissaggi su muratura e legno
- » installazione qualificata con punte aspiranti per ridurre l'esposizione alla polvere e i tempi di pulizia
- » performance qualificate sia per calcestruzzo secco, umido e foro allagato (non teme l'acqua o l'umidità e la reazione di indurimento avviene anche in presenza di acqua)
- » applicazione possibile anche su calcestruzzo con temperatura da -10°C a 40°C
- » massima profondità di ancoraggio fino a 20 volte il diametro nominale della barra filettata
- » Temperature di esercizio certificate: - 40° C ÷ + 40° C con T°max lungo periodo = 24°C, - 40° C ÷ + 80° C con T°max lungo periodo = 72°C
- » non necessita di premiscelazione (la miscelazione tra resina e indurente avviene solo durante l'estruzione mediante il passaggio nel miscelatore)
- » prodotto con qualifiche ambientali relative al contenuto e all'emissione di VOC (composti organici volatili)

GF400PLUS > Tempi di posa (foro asciutto)

Temperatura del supporto in cls	Tempo di lavorabilità	Tempo di attesa per la messa in carico
°C	min	min
40	1	20
35	2	25
30	3	30
25	5	35
20	7	40
15	11	45
10	16	60
5	25	90
0	45	420
-5	65	840
-10	105	1140

^{*} nel caso di foro umido o allagato i tempi per la messa in carico raddoppiano.

CONSIGLI PER IL MONTAGGIO



GF400PLUS > Consumi stimati

Diametro barra	Dimensione foro (materiali pieni)	N° di fissaggi per cartucca * (materiali pieni)	Dimensione foro (materiali forati)	N° di fissaggi per cartuccia * (materiali forati)
mm	d0 x hef (mm)	N°	d0 x hef (mm)	N°
8	10 x 80	75	12 x 80	35
10	12 x 90	51	15 x 90	20
12	14 x 110	34	20 x 110	9
16	18 x 125	21	22 x 125	6
20	24 x 170	7	30 x 170	3
24	28 x 210	5	-	-
27	30 x 240	4	-	-
30	35 x 270	2	-	-

^{*} valori stimati / indicativi.

d : diametro barra

do: diametro foro

hmin : spessore minimo del supporto

hη: profondità del foro

h_{nom} : profondità di inserimento hef: profondità effettiva di ancoraggio

Tinst: coppia di serraggio S_{Cr}: interasse caratteristico

Ccr: distanza dal bordo caratteristica Smin: interasse minimo

C_{min} : distanza minima dal bordo

tfix : spessore fissabile

df: diametro foro spessore fissabile

GF400PLUS > Dati per l'installazione e il calcolo su CLS

Diametro barra	Diametro foro d0		sore mi porto h			rofondi el foro l			ofondità mento l			ndità efi coraggi		Chiave Sw	Coppia di serraggio
			mm			mm			mm			mm			
mm	mm	min	med	max	min	med	max	min	med	max	min	med	max	mm	Nm
8	10	100	110	190	65	85	165	60	80	160	60	80	160	13	10
10	12	100	120	230	75	95	205	70	90	200	70	90	200	17	20
12	14	110	140	270	85	115	245	80	110	240	80	110	240	19	40
16	18	136	161	356	105	130	325	100	125	320	100	125	320	24	80
20	24	168	218	448	125	175	405	120	170	400	120	170	400	30	130
24	28	201	266	536	150	215	485	145	210	480	145	210	480	36	200
27	30	205	300	600	150	245	545	145	240	540	145	240	540	41	250
30	35	215	340	670	150	275	605	145	270	600	145	270	600	46	300

GF400PLUS > Dati per l'installazione e il calcolo su CLS - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro do		nterass eristico		Distanza dal bordo caratteristica C _{cr,N}			Interasse minimo Smin	Distanza dal bordo minima C _{min}
mm	mm	min	mm med	max	min	mm med	max	mm	mm
8	10	180	230	230	90	115	115	40	35
10	12	210	248	248	105	124	124	50	40
12	14	240	297	297	120	149	149	60	45
16	18	300	375	396	150	188	198	75	50
20	24	360	450	450	180	225	225	90	55
24	28	435	540	540	218	270	270	115	60
27	30	435	624	624	218	312	312	120	75
30	35	435	693	693	218	346	346	140	80

GF400PLUS > Dati di carico su CLS per hef min

Diametro barra	Profondità effettiva di ancoraggio hef	Carico car a trazio				Carico ammissibile a trazione N _{rec}		Carico ammissibile a taglio V _{rec}	
		k	N	k	N	k	N	kN	
mm	mm mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.
8	60	19,0	-	9,5	-	9,0	-	5,4	-
10	70	26,4	19,8	15,1	15,1	12,5	9,4	8,6	8,6
12	80	35,2	24,6	21,9	21,9	16,8	11,7	12,5	12,5
16	100	49,2	34,4	40,8	40,8	23,4	16,4	23,3	23,3
20	120	64,7	45,3	63,5	63,5	30,8	21,6	36,3	36,3
24	145	85,9	-	92,0	-	40,9	-	52,5	-
27	145	85,9	-	114,5	-	40,9	-	65,4	-
30	145	85,9	-	140,0	-	40,9	-	80,0	-

GF400PLUS > Dati di carico su CLS per hef med

Diametro barra	Profondità effettiva di ancoraggio hef	Carico caratteristico Carico caratterist a trazione NRk a taglio VRk			Carico am a trazio		Carico ammissibile a taglio Vrec		
		kl	N	k	N	k	N	kN	
mm	mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.
8	80	29,2	-	14,6	-	13,9	-	8,3	-
10	90	33,9	25,4	23,2	23,2	16,2	12,1	13,3	13,3
12	110	49,8	37,3	33,7	33,7	23,7	17,8	19,3	19,3
16	125	68,8	48,1	62,5	62,5	32,7	22,9	35,7	35,7
20	170	101,5	69,4	101,5	101,5	48,3	33,1	58,0	58,0
24	210	149,7	-	146,5	-	71,3	-	83,7	-
27	240	162,9	-	183,5	-	77,6	-	104,9	-
30	270	203,6	-	224,5	-	96,9	-	128,3	-

GF400PLUS > Dati di carico su CLS per hef max

Diametro barra	Profondità effettiva di ancoraggio hef	Carico caratteristico a trazione NRk		Carico caratteristico a taglio VRk		Carico ammissibile a trazione N _{rec}		Carico ammissibile a taglio Vrec	
		k	N	k	N	kN		kN	
mm	mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.
8	160	29,2	-	14,6	-	13,9	-	8,3	-
10	200	46,4	46,4	23,2	23,2	22,1	22,1	13,2	13,3
12	240	67,4	67,4	33,7	33,7	32,1	32,1	19,3	19,3
16	320	125,0	125,0	62,5	62,5	59,5	59,5	35,7	35,7
20	400	203,0	163,4	101,5	101,5	96,6	77,8	58,0	58,0
24	480	293,0	-	146,5	-	139,5	-	83,7	-
27	540	366,4	-	183,5	-	174,5	-	104,9	-
30	600	449,0	-	224,5	-	213,8	-	128,3	-

PRINCÌPI DI CALCOLO

- » resistenze caratteristiche derivanti da valori certificati secondo ETA di prodotto
- » carichi validi per singolo ancorante senza influenza di interasse e distanza dal bordo e $h \ge 2 h_{ef}$, calcestruzzo di classe C20/25 e barre filettate di classe 8.8
- » azione di taglio non diretta verso il bordo
- » con foro allagato si consiglia una riduzione dei carichi del 20%

GF400PLUS > Dati per l'installazione e il calcolo su Mattone pieno

Diametro barra	Diametro foro do	Spessore minimo supporto h _{min}	Profondità del foro hı	Profondità di inserimento h _{nom}	Profondità effettiva di ancoraggio hef	Chiave Sw	Coppia di serraggio
mm	mm	mm	mm	mm	mm	mm	Nm
8	10	200	85	80	80	13	7
10	12	250	90	85	85	17	15
12	14	300	100	95	95	19	25
16	18	350	130	125	125	24	30

GF400PLUS > Dati per l'installazione e il calcolo su Mattone pieno - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro do	Interasse caratteristico S _{Cr,N}	Distanza dal bordo caratteristica Ccr,N	Interasse minimo Smin	Distanza dal bordo minima Cmin
mm	mm	mm	mm	mm	mm
8	10	160	200	100	100
10	12	200	200	100	100
12	14	240	200	100	100
16	18	320	200	100	100

GF400PLUS> Dati di carico su Mattone pieno

Diametro barra	Carico ultimo medio a trazione NR _{um}	Carico ultimo medio a taglio VR _{um}	Carico ammissibile a trazione N _{rec}	Carico ammissibile a taglio V _{rec}
mm	kN	kN	kN	kN
8			2,0	3,0
10		mercato di supporti	2,6	3,4
12	di questo tipo, si racc valori di carico tramite d	opportune prove in situ.	2,8	3,9
16			4,0	4,2

GF400PLUS > Dati per l'installazione e il calcolo su Legno Lamellare

Diametro barra	Diametro foro d0	Spessore minimo supporto hmin	Profondità del foro hì	Profondità di inserimento hnom	Profondità effettiva di ancoraggio hef	Chiave Sw	Coppia di serraggio
mm	mm	mm	mm	mm	mm	mm	Nm
8	10	160	85	80	80	13	7
10	12	200	105	100	100	17	15
12	14	240	125	120	120	19	25
16	18	320	165	160	160	24	30

GF400PLUS > Dati per l'installazione e il calcolo su Legno lamellare - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro do	Interasse caratteristico S _{Cr,N}	Distanza dal bordo caratteristica C _{Cr,N}	Interasse minimo Smin	Distanza dal bordo minima C _{min}
mm	mm	mm	mm	mm	mm
8	10	100	80	50	50
10	12	125	100	50	50
12	14	150	120	60	60
16	18	200	160	80	80

GF400PLUS > Dati di carico su Legno lamellare

Diametro barra	Carico ultimo medio a trazione NR _{um}	Carico ultimo medio a taglio VR _{um}	Carico ammissibile a trazione N _{rec}	Carico ammissibile a taglio V _{rec}		
mm	kN	kN	kN	kN		
8			3,2	riferirsi alle istruzioni		
10		l mercato di supporti	4,2			
12		comanda di ricavare i opportune prove in situ.	6,1	CNR-DT 206/2007 (7.10.2.3)		
16			10,7	, ,		

GF585EPLUS

Ancorante chimico bicomponente epossidico ad alte prestazioni

CERTIFICAZIONI

Option 1 - Option 7

Option 1 per barre M12 ÷ M30 (cls fessurato) Option 7 per barre M8 ÷ M30 (cls non fessurato)

Qualifica in Categoria Sismica C2 per barre M12 ÷ M24

CAMPI DI UTILIZZO

Commerciale	Dimensionale

Gamma	Q.tà*	Descrizione
codice	N°	-
290GF585EPLUS	12	Cartuccia di resina epossidica bi-componente da 585 mL completa di 2 miscelatori

^{*} per confezione (articoli fornibili anche singolarmente)

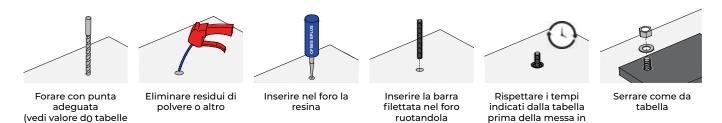
Articoli Complementari

Codice	Q.tà*	Descrizione	per barre filettate
-	N°	-	-
290RET12	1	Calza metallica Ø12 (1 mt)	M8
290RET16	1	Calza metallica Ø16 (1 mt)	M8 ÷ M12
290RET22	1	Calza metallica Ø22 (1 mt)	M12 ÷ M16
290RET30	1	Calza metallica ø30 (1 mt)	M16 ÷ M24
290MISC	20	Miscelatore	-
290SOFF	1	Pompa di soffiaggio	-
290P585EPLUS	1	Pistola manuale	-

^{*} per confezione (articoli fornibili anche singolarmente)

CARATTERISTICHE

- » prodotto tixotropico, senza stirene, con Service Life di 100 anni, ideale per grandi opere, interventi di rinforzo strutturale e adeguamenti sismici
- » adatto anche per fissaggi su muratura e legno e per lavori di consolidamento o come massa di riparazione e riempimento
- » prodotto qualificato per fori eseguiti sia con trapano che con carotatrice diamantata
- » installazione qualificata con punte aspiranti per ridurre l'esposizione alla polvere e i tempi di pulizia
- » fluidità incrementata per consentire l'installazione in fori profondi e in situazioni di basse temperature
- » performance qualificate sia per calcestruzzo secco, umido e foro allagato (non teme l'acqua o l'umidità e la reazione di indurimento avviene anche in presenza di acqua)
- » applicazione possibile anche su calcestruzzo con temperatura da 0 a 40°C
- » massima profondità di ancoraggio fino a 20 volte il diametro nominale della barra filettata
- » Temperature di esercizio certificate: - 40° C ÷ + 40° C con T°max lungo periodo = 24°C, - 40° C ÷ + 55° C con T°max lungo periodo = 50°C
- » ridotti tempi di serraggio
- » non necessita di premiscelazione (la miscelazione tra resina e indurente avviene solo durante l'estruzione mediante il passaggio nel miscelatore)
- » applicazione sopratesta qualificata (non cola)
- » prodotto con qualifiche ambientali LEED GOLD relative all'emissione di VOC (composti organici volatili) e conforme ai requisiti CAM

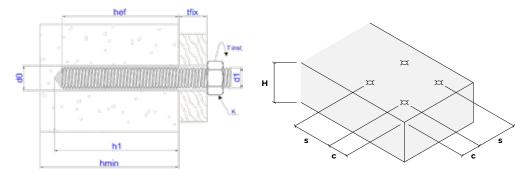

GF585EPLUS > Tempi di posa (foro asciutto)

of Sobel Edg vitemplial post (for distracto)									
Temperatura del supporto in cls	Tempo di lavorabilità	Tempo di attesa per il serraggio	Tempo di attesa per la messa in carico						
°C	min	h	h						
50	6	3	5						
40	8	3	5						
35	12	3	5						
30	15	3	5						
25	20	4	10						
20	30	4	12						
15	45	6	18						
10	60	12	24						
5	75	24	48						
0	120	48	96						

^{*} nel caso di foro umido o allagato i tempi per il serraggio e la messa in carico raddoppiano.

CONSIGLI PER IL MONTAGGIO

seguenti)


carico

GF585EPLUS > Consumi stimati

Diametro barra	Dimensione foro (materiali pieni)	N° di fissaggi per cartucca * (materiali pieni)	Dimensione foro (materiali forati)	N° di fissaggi per cartuccia * (materiali forati)
mm	d0 x hef (mm)	N°	d ₀ x hef (mm)	N°
8	10 x 80	110	12 x 80	51
10	12 x 90	75	15 x 90	29
12	14 x 110	50	20 x 110	13
16	18 x 125	31	22 x 125	9
20	24 x 170	11	30 x 170	3
24	28 x 210	7	-	-
27	30 x 240	6	-	-
30	35 x 270	3	-	-

^{*} valori stimati / indicativi.

d : diametro barra

do : diametro foro hmin : spessore minimo del supporto

 $h_{\overline{1}}$: profondità del foro

h_{nom} : profondità di inserimento

hef: profondità effettiva di ancoraggio

S_W: chiav

T_{inst}: coppia di serraggio
S_{Cr}: interasse caratteristico
C_{Cr}: distanza dal bordo caratteristica
S_{min}: interasse minimo
C_{min}: distanza minima dal bordo

tfix : spessore fissabile df : diametro foro spessore fissabile

GF585EPLUS > Dati per l'installazione e il calcolo su CLS

Diametro barra	Diametro foro do	•		re minimo Profondità rto h _{min} del foro h ₁		Profondità di inserimento h _{nom}		Profondità effettiva di ancoraggio hef			Chiave Sw	Coppia di serraggio			
			mm			mm		mm		mm					
mm	mm	min	med	max	min	med	max	min	med	max	min	med	max	mm	m Nm
8	10	100	110	190	65	85	165	60	80	160	60	80	160	13	10
10	12	100	120	230	65	95	205	60	90	200	60	90	200	17	20
12	14	100	140	270	75	115	245	70	110	240	70	110	240	19	40
16	18	116	161	356	85	130	325	80	125	320	80	125	320	24	80
20	24	138	218	448	95	175	405	90	170	400	90	170	400	30	130
24	28	152	266	536	100	215	485	96	210	480	96	210	480	36	200
27	30	170	300	600	115	245	545	110	240	540	110	240	540	41	270
30	35	190	340	670	125	275	605	120	270	600	120	270	600	46	300

GF585EPLUS > Dati per l'installazione e il calcolo su CLS - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro do		nterass eristico	rasse Distanza dal bordo caratteristica C _{Cr,N}				Interasse minimo Smin	Distanza dal bordo minima C _{min}	
			mm			mm				
mm	mm	min	med	max	min	med	max	mm	mm	
8	10	180	202	202	90	101	101	40	35	
10	12	180	242	242	90	121	121	50	40	
12	14	210	291	291	105	145	145	60	45	
16	18	240	375	388	120	188	194	75	50	
20	24	270	462	462	135	231	231	90	55	
24	28	288	554	554	144	277	277	115	60	
27	30	330	624	624	165	312	312	120	75	
30	35	360	693	693	180 346 346		346	140	80	

GF585EPLUS > Dati di carico su CLS per hef min

Diametro barra	Profondità effettiva di ancoraggio hef	Carico caratteristico a trazione NRk		Carico caratteristico a taglio V _{Rk}		Carico ammissibile a trazione N _{rec}		Carico ammissibile a taglio V _{rec}		
		kı	N	k	kN		kN		kN	
mm	mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	
8	60	19,0	-	9,0	-	9,0	-	5,1	-	
10	60	22,9	-	14,0	-	10,9	-	8,0	-	
12	70	28,8	18,5	21,0	34,0	13,7	8,8	12,0	17,6	
16	80	35,2	24,6	39,0	49,3	16,8	11,7	22,3	23,5	
20	90	42,0	29,4	61,0	58,8	20,0	14,0	34,9	28,0	
24	96	46,3	32,4	88,0	64,8	22,0	15,4	44,1	30,8	
27	110	56,8	39,7	113,5	79,5	27,0	18,9	54,1	37,8	
30	120	64,7	45,3	129,3	90,5	30,8	21,6	61,6	43,1	

GF585EPLUS > Dati di carico su CLS per hef med

	,										
Diametro barra	Profondità effettiva di ancoraggio hef	Carico caratteristico a trazione NRk		Carico caratteristico a taglio V _{Rk}		Carico ammissibile a trazione N _{rec}		Carico ammissibile a taglio V _{rec}			
mm mm	k	N	k	kN		kN		kN			
	mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.		
8	80	29,2	-	15,0	-	13,9	-	8,6	-		
10	90	42,0	-	23,0	-	20,0	-	13,1	-		
12	110	56,8	32,9	34,0	34,0	27,0	13,8	19,4	19,4		
16	125	68,8	47,1	63,0	63,0	32,7	22,4	36,0	36,0		
20	170	109,0	74,7	98,0	98,0	51,9	35,6	56,0	56,0		
24	210	149,7	104,8	141,0	141,0	71,3	49,9	80,6	80,6		
27	240	182,9	128,0	184,0	184,0	87,1	61,0	105,1	105,1		
30	270	218,2	152,8	224,0	224,0	103,9	72,7	128,0	128,0		

GF585EPLUS > Dati di carico su CLS per hef max

Diametro barra	Profondità effettiva di ancoraggio hef	Carico caratteristico a trazione NRk					Carico ammissibile a trazione N _{rec}		Carico ammissibile a taglio V _{rec}	
		k	N	k	N	k	N	kı	٧	
mm	mm	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	cls non fess.	cls fess.	
8	160	29,2	-	15,0	-	13,9	-	8,6	-	
10	200	46,4	-	23,0	-	22,1	-	13,1	-	
12	240	67,4	63,3	34,0	34,0	32,1	30,1	19,4	19,4	
16	320	125,0	120,5	63,0	63,0	59,5	57,4	36,0	36,0	
20	400	203,0	175,8	98,0	98,0	96,7	83,7	56,0	56,0	
24	480	293,0	289,2	141,0	141,0	139,5	137,7	80,6	80,6	
27	540	381,0	320,3	184,0	184,0	181,4	152,5	105,1	105,1	
30	600	466,0	367,2	224,0	224,0	221,9	174,9	128,0	128,0	

PRINCIPI DI CALCOLO

- » resistenze caratteristiche derivanti da valori certificati secondo ETA di prodotto
- » carichi validi per singolo ancorante senza influenza di interasse e distanza dal bordo e h ≥ 2 hef, calcestruzzo di classe C20/25 e barre filettate di classe 8.8
- » azione di taglio non diretta verso il bordo
- » con foro allagato si consiglia una riduzione dei carichi del 20%

GF585EPLUS > Dati per l'installazione e il calcolo su Mattone pieno

Diametro barra	Diametro foro do	Spessore minimo supporto h _{min}	Profondità del foro hı	Profondità di inserimento h _{nom}	Profondità effettiva di ancoraggio hef	Chiave Sw	Coppia di serraggio
mm	mm	mm	mm	mm	mm	mm	Nm
8	10	200	85	80	80	13	7
10	12	250	90	85	85	17	15
12	14	300	100	95	95	19	25
16	18	350	130	125	125	24	30

GF585EPLUS > Dati per l'installazione e il calcolo su Mattone pieno - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro do	Interasse caratteristico S _{Cr,N}	Distanza dal bordo caratteristica Ccr,N	Interasse minimo Smin	Distanza dal bordo minima Cmin
mm	mm	mm	mm	mm	mm
8	10	160	200	100	100
10	12	200	200	100	100
12	14	240	200	100	100
16	18	320	200	100	100

GF585EPLUS > Dati di carico su Mattone pieno

Diametro barra	Carico ultimo medio a trazione NR _{um}	Carico ultimo medio a taglio VR _{um}	Carico ammissibile a trazione N _{rec}	Carico ammissibile a taglio V _{rec}
mm	kN	kN	kN	kN
8			2,0	3,0
10	vista la variabilità sul	• •	2,6	3,4
12	di questo tipo, si racc valori di carico tramite d		2,8	3,9
16			4,0	4,2

GF585EPLUS > Dati per l'installazione e il calcolo su Legno Lamellare

Diametro barra	Diametro foro do	Spessore minimo supporto hmin	Profondità del foro hı	Profondità di inserimento h _{nom}	Profondità effettiva di ancoraggio hef	Chiave Sw	Coppia di serraggio
mm	mm	mm	mm	mm	mm	mm	Nm
8	10	160	85	80	80	13	7
10	12	200	105	100	100	17	15
12	14	240	125	120	120	19	25
16	18	320	165	160	160	24	30

GF585EPLUS > Dati per l'installazione e il calcolo su Legno lamellare - distanze e interassi caratteristici e critici

Diametro barra	Diametro foro d0	Interasse caratteristico Scr,N	Distanza dal bordo caratteristica C _{cr} ,N	Interasse minimo Smin	Distanza dal bordo minima Cmin
mm	mm	mm	mm	mm	mm
8	10	100	80	50	50
10	12	125	100	50	50
12	14	150	120	60	60
16	18	200	160	80	80

GF585EPLUS > Dati di carico su Legno lamellare

Diametro barra	Carico ultimo medio a trazione NR _{um}			Carico ammissibile a taglio V _{rec}
mm	kN	kN	kN	kN
8			3,2	
10		mercato di supporti	4,2	riferirsi alle istruzioni
12		comanda di ricavare i opportune prove in situ.	6,1	CNR-DT 206/2007 (7.10.2.3)
16			10,7	, ,

EPFUR

Ancorante chimico bicomponente epossidico colabile

CAMPI DI UTILIZZO

Commerciale		Dimensionale
Gamma	Q.tà	Descrizione
codice	N°	-
290EPFU5	1	Fusto di adesivo epossidico da 4 kg + Latta di catalizzatore indurente da 1 kg RAL 1015 color Legno

CARATTERISTICHE

- » prodotto fluido, privo di solventi, caricato con inerti quarziferi, con buone caratteristiche dielettriche.
- » idoneo su tutti i materiali da costruzione (cemento, ferro, legno, marmo, materiali lapidei in genere).
- » ottimo potere adesivo, anche in presenza di umidità nel supporto, ed elevate resistenze meccaniche, soprattutto a estrazione, una volta indurito.
- » si distacca facilmente dagli attrezzi in materiale plastico una volta indurito, facilitandone la pulizia.

CONSIGLI PER LA MISCELAZIONE E L'IMPIEGO

- » agitare manual mente il barattolo dell'indurente per omogeneizzarne il contenuto, dopodichè aprirlo e versarlo nel fusto dell'adesivo epossidico.
- » miscelare i due componenti con un miscelatore a frusta a bassa velocità (200-220 giri/minuto) per circa un minuto o finchè la massa non abbia raggiunto una tonalità uniforme.
- » è buona norma impiegare le parti secondo il rapporto di miscelazione pari a quello delle confezioni originali, ossia 4:1.
- » applicare il contenuto ottenuto per colaggio direttamente dall'imballo originale, su superfici preventivamente pulite ed eventualmente sabbiate per ottenere un maggior aggrappaggio.

SCHEDA TECNICA EPFUR

EPFUR > Tempi di posa

Temperatura del supporto	Tempo di lavorabilità	Tempo di indurimento	Tempo di attesa per la messa in carico
°C	min	min	min
10	90	160	25
20	60	80	30
30	45	40	35

EPFUR > Consigli per l'utilizzo

Peso specifico ASTM D1505-85	kg/dm³	1,40 ± 0,05
Vita utile in vaso aperto a 10 °C	min	90
Vita utile in vaso aperto a 20 °C	min	60
Vita utile in vaso aperto a 30 °C	min	45
Adesione al calcestruzzo UNI EN 1542	MPa	3,5
Carico unitario di rottura a compressione ASTM D695 dopo 8 h dall'applicazione	MPa	15
Carico unitario di rottura a compressione ASTM D695 dopo 24 h dall'applicazione	MPa	25
Carico unitario di rottura a compressione ASTM D695 dopo 7 gg dall'applicazione	MPa	70
Modulo elastico a compressione ASTM D695	MPa	7800 ÷ 8200
Carico unitario di rottura per trazione a 7 gg ASTM D638	MPa	15
Carico unitario di rottura a flessione ASTM D790 dopo 8 h dall'applicazione	MPa	10
Carico unitario di rottura a flessione ASTM D790 dopo 24 h dall'applicazione	MPa	25
Carico unitario di rottura a flessione ASTM D790 dopo 7 gg dall'applicazione	MPa	40
Carico unitario di rottura a taglio	MPa	37
Temperatura di deflessione termica	°C	57
Coefficiente di dilatazione termica lineare a 7 gg ASTM D696	1/°C	2,93 x 10 ⁻⁵
Adesione su legno (abete rosso) ASTM D4541	Rottura	100% supporto
Ritiro lineare ASTM D2566	%	0,28
Adesione ultima media su calcestruzzo ≥ 20/25 (barre M8 - M30)	MPa	11,0

